domingo, 1 de marzo de 2009

LAS TRES FUNCIONES LÓGICAS BÁSICAS ( I )

Existen tres bloques fundamentales con los cuales se pueden construír todas las funciones lógicas capaces de ser concebidas por la mente humana. Estos son los ladrillos sobre los cuales descansan todas las computadoras que se usan hoy en día, desde las computadoras caseras hasta las supercomputadoras más poderosas.

Comenzaremos nuestra introducción al mundo de la lógica digital repasando los principios del funcionamiento de los relevadores electromecánicos, los cuales se apoyan en el bien conocido fenómeno de que cuando se le aplica una corriente eléctrica a un alambre con aislamiento que está enrollado alrededor de un cilindro metálico (o inclusive enrollado alrededor de un clavo ordinario), se crea un campo magnético que puede atraer a otros objetos metálicos, como lo muestran las siguientes figuras:



En la figura de la izquierda, al aplicarle al alambre enrollado en torno al cilindro metálico un voltaje proporcionado quizá por alguna batería, el voltaje produce una corriente eléctrica la cual a su vez crea un campo magnético, cuyas "líneas de fuerza" magnéticas pueden actuar sobre objetos metálicos cercanos a ellas. Y en la figura de la derecha, al remover el voltaje, el campo magnético desaparece. Encima de ambas figuras se ha dibujado una laminita metálica móvil que actúa como interruptor eléctrico o switch, la cual está unida a un resorte (no dibujado) que la jala hacia arriba. Como puede verse, al aplicarse un voltaje al alambre enrollado, el interruptor eléctrico se cierra, estando habilitado para permitir el paso de la corriente eléctrica, mientras que al no haber voltaje, por la acción del resorte que jala a la laminita hacia arriba el contacto se rompe. Para simplificar nuestro análisis, al voltaje que le aplicamos al alambre, que puede ser de 1.5 volts, 9 volts, o algún otro valor, lo llamaremos simplemente como "1" (uno). Y a la ausencia de dicho voltaje la llamaremos simplemente como "0" (cero). De este modo, al aplicarle un "1" al relevador, el contacto eléctrico puesto encima del mismo se cierra, y al remover dicho "1" (que es lo mismo que aplicar un "0"), el contacto eléctrico se abre. Puesto que las terminales de conducción eléctrica del alambre enrollado (al cual llamaremos bobina) son eléctricamente independientes (aisladas) de las terminales de conducción eléctrica que se unen por la acción de la laminita puesta encima de la bobina, el valor que tome la entrada de voltaje a la bobina del relevador, ya sea "0" ó "1", no será afectado por lo que suceda a la salida del mismo, llamándosele aquí "salida" a cualquier señal de voltaje que pueda ser transmitida por la laminita superior al ser cerrada por la acción del campo magnético del relevador activado con un "1".

A continuación, por cortesía del sitio HowStuffWorks.com, tenemos un archivo animado que muestra cómo trabaja un relevador electromecánico al cerrarse el interruptor que permite que la bobina del relevador sea energizada por una batería, permitiendo con ello que se cierre el circuito para que otra batería pueda encender un foco :



Aunque la batería (fuente de poder) que energiza a la bobina del relevador es una y la batería que enciende al foco es otra, la figura sugiere que se trata de baterías iguales proporcionando el mismo nivel de voltaje (por ejemplo, 5 volts) tanto a la bobina del relevador como al foco, lo cual sugiere que en lugar de tener que utilizarse dos baterías se podría utilizar una sola batería, la misma batería actuando en común para ambos propósitos. Esto es importante porque el "1" que activa al relevador vendría a ser en todos sentidos el mismo "1" que enciende al foco. Considérese a continuación el siguiente circuito formado por dos relevadores, en los cuales los resortes que normalmente jalan las palancas (o laminitas) conectoras de los relevadores son mostrados de color rojo:



Normalmente, toda fuente de corriente directa como los acumuladores de los automóviles tiene un polo positivo (+) y un polo negativo (-), pero con fines de simplificación en los diagramas y esquemáticos se acostumbra designar al polo negativo (-) como tierra eléctrica (en inglés, ground ó GND). Esto nos permite "olvidarnos" del polo negativo y hablar simplemente de la aplicación de un "1" (un voltaje) o de un "0" (ningún voltaje) a una terminal como la terminal A ó como la terminal B. En este diagrama, si aplicamos un voltaje positivo (que aquí también llamaremos simplemente "1") en la terminal A, el relevador se energizará. Obsérvese que en un contacto conector superior del relevador izquierdo tenemos un voltaje de +6 volts, el cual al ser activada la terminal A con un voltaje de "1" y cerrarse la conexión superior del relevador puede pasar a la otra terminal del mismo. Sin embargo, este voltaje no llegará hasta el extremo izquierdo de la configuración, designado como Q, si la entrada del relevador del lado derecho no ha sido activado también en su terminal B con un "0", por estar conectadas las terminales de contactos de ambos relevadores en serie, una tras la otra. La única manera en la cual el voltaje de +6 volts puede llegar desde el lado izquierdo de la configuración hasta el lado derecho en la terminal Q es si ambos relevadores están energizados con un "1" en las terminales A y B. Supongamos por un momento que hemos diseñado aquí los relevadores de modo tal que el voltaje requerido para energizar cualquiera de ellos sea también de +6 volts. Esto nos permite llamar a los +6 volts simplemente como "1". Y nos permite hacer una afirmación interesante: si las entradas en las terminales A y B son "1", entonces la salida Q también será "1". Pero si cualquiera de las entradas en las terminales A y B o en ambas es "0", entonces la salida será "0". Unicamente cuando ambas entradas son "1" tendremos una salida de "1". Unicamente cuando A y B son ambas "1" la salida será también "1".

Podemos representar el funcionamiento de este tipo de circuito de una manera más concreta y más fácil de leer:





La traducción inglesa de la palabra española "y" es la palabra and. Esta es precisamente la palabra que usaremos para identificar cualquier tipo de sistema combinado que muestre un comportamiento como el que acabamos de ver. Es común representar un circuito de esta naturaleza de la manera siguiente:




Este bloque es mejor conocido como la función AND que como ya se dijo su traducción del inglés al español significa la palabra "y", como en la frase "patria y libertad", y es en sí una función lógica básica. Este será uno de nuestros "ladrillos" fundamentales. Podemos representar sus propiedades en una tabla mejor conocida como Tabla de Verdad que se muestra a continuación:





Considérese ahora el siguiente circuito construído con relevadores electromecánicos:





Si no hay voltaje alguno aplicado en las dos terminales de entrada A y B, las bobinas de ambos relevadores no se energizarán y los dos interruptores de ambos relevadores se mantendrán en las posiciones mostradas en el diagrama. En tal caso, el voltaje (+) que llamaremos "1" no llegará a la Salida, no habiendo por lo tanto voltaje alguno en ella. La ausencia de voltaje en la Salida la identificaremos con un "cero" ó "0". La situación cambia cuando aplicamos un voltaje (o un "1") en la terminal A, en tal caso la bobina se energiza y "jala" el contacto hacia abajo, conectando el voltaje (+) a la Salida, con lo cual la Salida pasará de la condición "0" a la condición "1". Este "1" permanecerá en la Salida mientras haya un "1" aplicado en la terminal "1". Por otro lado, cuando aplicamos un voltaje (o un "1") en la terminal B, en tal caso la bobina también se energizará y "jalará" el contacto hacia abajo, conectando el voltaje (+) a la Salida, con lo cual la Salida pasará de la condición "0" a la condición "1". Y si ambas terminales de entrada A y B son energizadas con un "1", la Salida seguirá recibiendo el voltaje (+) ó "1" por las dos vías. Básicamente, tenemos un circuito en el cual la Salida será "1" cuando cualquiera de las entradas A ó B tenga un "1" aplicado en ella.

2 comentarios:

  1. Buenisimo tu aporte, pregunta?RESOLUCIÒN DE CIRCUITOS ELECTRICOS
    I.- EN UN CIRCUITO ELECTRICO COMBINADO O MIXTO TENEMOS UNA FUENTE DE CORRIENTE DE 25 VOLT Y 5 RESISTENCIAS DE 5, 3, 2, 1, 4 OHM RESPECTIVAMENTE, QUE ESTÀN CONECTADAS LAS DOS PRIMERAS EN SERIE, LA SIGUIENTE EN PARALELO CON ESTAS DOS, Y LAS DOS ÙLTIMAS EN SERIE ENTRE SI Y ASU VEZ EN PARALELO CON LAS ANTERIORES.

    A.- REPRESENTA GRAFICAMENTE DICHO CIRCUITO.

    B.- CONECTA EN EL MISMO LOS INSTRUMENTOS QUE CORRESPONDAN PARA MEDIR LA INTENSIDAD DE CORRIENTE QUE PASA POR LA TERCERA RESISTENCIA, Y OTRO PARA MEDIR EL VOLTAJE EN LA ÙLTIMA RESISTENCIA.

    C.- CÀLCULA:

    1.- La Resistencia equivalente.
    2.- La Intensidad equivalente.
    3.- Las intensidades en cada una de las resistencias.
    4.- los voltajes en cada uan de las resistencias.
    Desde ya gracias por tu espuesta

    ResponderEliminar

ESCRIBE AQUI TUS COMENTARIOS Y DEJA TAMBIEN TUS DUDAS E INTERESES QUE TE CONTESTARÉ A LA MAYOR BREVEDAD POSIBLE. SI TE INTERESA CUALQUIER OTRO TEMA PREGUNTAMELO QUE TE AYUDARÉ .