Podemos observar que, sin el cero, se habría requerido un símbolo diferente para cada número mayor que nueve (por ejemplo, el símbolo A para el diez, el símbolo B para el once, el símbolo C para el doce, etc.). En efecto, sin el cero, cualquier sistema numérico resulta extremadamente complejo e impráctico (podemos imaginar los problemas que padecían los romanos cuando en su sistema de numeración romana trataban de multiplicar una cantidad por otra, cuando trataban de multplicar algo como XXIII por LIV en vez de lo que para nosotros es 23 por 54). No en vano se ha proclamado la invención del cero como uno de los más importantes avances en la historia de la humanidad.Nuestra atención se vuelve ahora hacia un problema filosófico. Supongamos que el hombre en vez de tener cinco dedos en cada mano hubiese tenido tres. ¿Cuál habría sido nuestra forma de contar?Un momento de reflexión nos indica que nuestro sistema numérico en tal caso no habría sido muy diferente del sistema decimal que conocemos en la actualidad. Al tener tres dedos en cada mano, nuestra inclinación natural habría sido contar de seis en seis, de la misma manera en que el hombre moderno con cinco dedos en cada mano cuenta de diez en diez. Al contar de seis en seis, la numeración ascendería de la manera siguiente:

Notamos que el sistema numérico basado en seis dedos, el sistema numérico base seis, nunca utiliza el símbolo 6, de la misma manera que en el sistema númerico base diez (o sistema decimal) no existe ningún símbolo especial para representar el número diez. Notamos también que el conteo ascendente en el sistema numérico base seis procede en forma similar al conteo ascendente en el sistema numérico base diez. Al llegar al 5, se toma el símbolo que representa la menor cantidad de unidades (el 1) y se le agrega un cero, obteniéndose así la siguiente cifra. El proceso se repite indefinidamente de modo similar al proceso utilizado en el sistema decimal. El número que sigue a 555, por ejemplo, sería 1000. Nótese que una colección de ocho objetos en el sistema decimal se representa con el número 8 mientras que en el sistema numérico base seis se representa con el número 12 (esta equivalencia se representa simbólicamente como
810 = 126).
Por extraño que el sistema numérico base seis nos parezca, debemos recordar que éste no nos sería tan extraño si tuviésemos tres dedos en cada mano.Vemos pues, que la única razón por la cual contamos de diez en diez es porque tenemos diez dedos en ambas manos. Vemos también que son igualmente posibles otros sistemas numéricos, no sólo el sistema numérico base seis, sino también el sistema numérico base cuatro, el sistema numérico base siete, etc.Podemos convertir un número cualquiera de nuestra base decimal a una base menor (por ejemplo, un número en sistema decimal a su equivalente en sistema base tres) por el método de la división sucesiva. Este método se lleva a cabo de la siguiente manera:
(1) Se divide el número decimal dado entre la base al cual queremos convertir al número, y se destaca el residuo obtenido.
(2) El cociente obtenido de la división anterior se vuelve a dividir nuevamente entre la base a la cual queremos convertir el número, y se destaca el residuo así obtenido.
(3) El procedimiento anterior se repite hasta que ya no es posible seguir dividiendo sin obtener una fracción con punto decimal. Al llegar a esta etapa, se destacan el dividendo obtenido así como el residuo.
(4) El número correspondiente a la base menor se obtiene escribiendo como el primer dígito el dividendo obtenido en el último paso anterior, y poniendo como el segundo dígito (a su derecha) el residuo obtenido del también del último paso anterior.
(5) Para el tercer dígito, escribimos a la derecha del resultado anterior el residuo obtenido de la penúltima división.
(6) El paso anterior se repite hasta que se hayan agotado todos los dígitos.Para convertir un número en una base menor al sistema decimal (por ejemplo, un número en el sistema base siete a su equivalente en sistema decimal), se multiplica la primera cifra del número por la base menor. Al producto resultante se le agrega la segunda cifra del número y se vuelve a multiplicar por la base menor. El procedimiento se continúa hasta agotar las cifras, después de lo cual se tendrá el número decimal.
De un interés especial para nosotros es el sistema numérico base dos o sistema binario.Si el hombre hubiera tenido tan solo un dedo en cada mano, entonces para ir contando "hacia arriba de uno en uno" en el sistema base dos o sistema binario, y tomando en cuenta que así como en el sistema decimal o sistema base diez al que estamos acostumbrados no existe un símbolo especial para representar el número diez tampoco en el sistema binario existirá un símbolo especial para representar el número dos, el conteo binario ascendente "hacia arriba" procedería de la manera siguiente:

(En esta lista de números binarios se ha destacado también, con fondo color ciano, el número binario que representa a un onceavo objeto.) Y así, en el sistema binario, tal vez al ir al mercado a comprar unas naranjas le diríamos a la encargada del puesto algo como "por favor deme 101 naranjas". Y si esto nos parece raro, hay que meditar que para los individuos de una civilización alienígena que tuviesen siete dedos en cada mano, dando un total de 14 dedos (con lo cual su sistema de numeración seguramente sería base 14), nuestro sistema de contar decimal tal vez les parecería sumamente extraño. Todo es cuestión de perspectiva.
¿Y por qué es de tanto interés para nosotros el adentrarnos en un sistema numérico como el sistema binario, como si no tuviéramos ya suficientes problemas con el sistema decimal?Al tratar de utilizar circuitos eléctricos para llevar a cabo operaciones matemáticas (o bien, operaciones de control), nos encontramos con el hecho de que existen únicamente dos estados posibles que se pueden utilizar para llevar a cabo procesamiento de información. Uno es el estado de encendido, lo cual podemos representar con el número uno ("1"). El otro es el estado apagado, el cual representamos como cero ("0").Imaginemos una hilera de cinco focos, en la cual el primer foco (a la izquierda) está apagado, los dos focos siguientes encendidos, el cuarto foco apagado y el quinto foco encendido. Representando los focos encendidos con un "1" cada uno y los focos apagados con un "0" cada uno, obtenemos la siguiente representación:
01101 Este número representa el número 13 en el sistema decimal.
Cada dígito del número binario, encendido o apagado, se conoce como bit. Una serie de varios bits en sucesión como la arriba mostrada se conoce comunmente como palabra binaria o simplemente palabra. Así pues, siguiendo la costumbre legada de los árabes sarracenos, en la numeración binaria, al igual que en la numeración decimal en la cual conforme se va contando hacia arriba las cifras de magnitud creciente correspondientes a las unidades, las decenas, las centenas, etc. se van escribiendo hacia la izquierda, también en la numeración base 2 se acostumbra escribir los números binarios creciendo hacia la izquierda, y al hacer esto el "bit" de menor magnitud que es puesto en el extremo derecho es conocido como el bit menos significativo (en inglés: Least Significant Bit ó LSB), mientras que el "bit" de mayor magnitud es puesto en el extremo izquierdo y es conocido como el bit más significativo (en inglés: Most Significant Bit ó MSB).A continuación se muestra una tabla conocida como tabla de equivalencias:

10110 = 10000 + 100 + 10= 16 + 4 + 2= 22
Veamos esto mismo desde otro punto de vista, desde el punto de vista de la representación de un número usando potencias de dos. La tabla anterior de equivalencias puede ser representada usando potencias del número dos (en donde por definición una exponenciación a la potencia cero es tomada como la unidad).
Teniendo esto en mente, podemos construír una tabla de potencias de dos como la siguiente:

Existe una forma especial de representar los números decimales usando el sistema binario, para que estos se parezcan un poco más a la numeración que usamos (aunque no es notación binaria pura). Cada dígito decimal se representa por su equivalente por separado, sin llevar a cabo conversión alguna. Por ejemplo, el número 3497 se representa como sigue:

como divido 2 numeros en binario por un metodo llamado restas y desplazamientos
ResponderEliminar